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Abstract
The screening of the Coulomb interaction in quantum wires, subject to strong
perpendicular magnetic fields, is assessed by means of an approximate analytic
solution of the integral equation for the screened potential as well as by the
numerical solution of this equation. The exchange–correlation contribution
to the Fermi-edge group velocity, vecg (kF ), is proved to be nonsingular.
For sufficiently strong magnetic fields, vecg (kF ) is approximately the same
as the Hartree velocity vHg (kF ). The energy dispersion curves, obtained
in the screened Hartree–Fock approximation, agree well with experimental
observations.

1. Introduction

In recent years considerable efforts have been devoted to the electron–electron effects on the
subband structure of quantum wires (QWs) in the presence of high magnetic fields [1–5]. In
submicron-width channels, many-body electron–electron interactions play a very important
role. However, to date, we are aware only of Hartree [2, 4] and Hartree–Fock [3] treatments
of Landau levels (LLs). In reference [6], correlation effects and their influence on the spin
splitting have been studied within the screened Hartree–Fock approximation (SHFA). One
important conclusion of this work is that corrections caused by screening strongly suppress the
exchange splitting and smooth the energy dispersion near the Fermi edge, where the derivative
of the exchange contribution diverges logarithmically. This is similar to the case of a three-
dimensional (3D) free-electron gas. As is well known, the unphysical singularity of the
Hartree–Fock energy can be traced back to the divergence of the Fourier transform of the
bare Coulomb potential 4πe2/q2 at �q = 0, and it can be removed by taking into account the
screening effects of other electrons in the system. However, in a quantum wire subject to a
strong perpendicular magnetic field, it is not clear how the singularity at the Fermi level caused
by exchange is cancelled by the screening and what the properties of the screening field are.
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The derivative, with respect to the wave vector, of the single-particle energy near the Fermi
level, i.e. the group velocity, is also worth considering because it is not only closely related to
the energy dispersion curves but also connected to experimental results [5].

In reference [6] the correlations were treated by an incomplete iteration procedure and
the strong suppression of exchange splitting obtained relied on nonstandard approximations
for the energy and group velocity. As discussed in reference [6] the validity of some of these
approximations is not obvious for r0 ∼ 1. Though the results of reference [6] are reasonable and
in agreement with some experimental results [5], it is desirable to have self-consistent results
obtained, e.g., by a complete iteration procedure, and obtain as explicit an expression for the
group velocity as possible. This is the purpose of the present work and the results are obtained
by both a numerical and an approximate analytical solution of the pertinent integral equation
for the screened potential. Importantly, our results are obtained without the assumption r0 � 1
common to standard perturbative calculations.

In sections 2 and 3 we present the formalism and obtain an approximate analytical solution
of the integral equation for the screened potential. This solution agrees well with that obtained
by solving the integral equation numerically. In section 4 we use the analytical solution to
calculate the correlation energies on the basis of the SHFA. As expected, at the Fermi edge
the divergence of the exchange is cancelled exactly by that of the correlations. In addition, we
obtain new expressions for the contributions of exchange and correlations to the group velocity
at the Fermi edge. Concluding remarks follow in section 5.

2. Basic relations

2.1. Free-particle energies

We consider an electron gas confined in a submicron-width channel, of widthW , by a potential
Vy and subjected to a strong magnetic field �B applied along the z-direction. If exchange and
correlation effects are neglected, the confining potential Vy can be taken as parabolic [6] for
W < 0.3 µm, i.e., Vy = m∗�2y2/2, where m∗ is the effective mass. Then the one-electron
Hamiltonian h0 is given, in the Landau gauge �A = (−By, 0, 0), by

h0 = [(px + eBy)2 + p2
y]/2m∗ + Vy + g0µBSzB/2

= p2
y

2m∗ +
1

2
m∗ω̃2[y − y0(px)]

2 +
p2
x

2m̃
+

1

2
g0µBSzB (1)

where

ωc = |e|B/m∗ ω̃ = (ω2
c + �2)1/2

m̃ = m∗ω̃2/�2 y0(px) = pxωc/m
∗ω̃2.

The corresponding eigenvalues εα and eigenfunctions !n,kx!σ are given by

εα ≡ εn,kx ,σ = h̄ω̃(n + 1/2) + h̄2k2
x/2m̃ + g0µBσB/2 (2)

!n,kx = eikxx$n(y − y0(kx))/
√
L. (3)

!σ is the spin wave function with eigenvalue σ = ±1. For the calculations that follow we
need the matrix elements [6] for L → ∞:

〈n′k′
x |ei�q·�r |nkx〉 = δqx+k−,0(n

′k′
x |eiqyy |nkx)

= δqx+k−,0

(
n′!
n!

)1/2(
a(k′

x − kx) + iqy√
2/l

)n−n′

e−u/2Ln−n′
n′ (u)eiaqyk+l

2/2. (4)
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Here k± = kx ± k′
x , a = ωc/ω̃, u = [a2q2

x + q2
y ]l̃2/2, l = (h̄/m∗ω̃)1/2 is the renormalized

magnetic length, and Ln−n′
n′ (u) the Laguerre polynomial. In agreement with experiments [5]

we assume that Vy is sufficiently smooth that � � ωc. This means that Vy affects the
eigenfunctions very little but it changes the eigenvalues considerably. This condition is usually
fulfilled for strong fields B.

2.2. Exchange and correlation corrections

The correction to the single-particle energy due to exchange and correlations, εecn,kx ,σ , can be
obtained by using, e.g., the screened Hartree–Fock approximation (SHFA) [9]. When the
upper, spin-split Landau level (LL) (n = 0, σ = −1) is empty, i.e. for ν = 1, εec0,kx ,1

is given
by [6]

εec0,kx ,1 ≈ − 1

8π3

∫ kF

−kF
dk′

x

∫ ∞

−∞
dqy

∫ ∞

−∞
dq ′

y V
s(kx − k′

x, qy, q
′
y)

× (0kx |eiqyy |0k′
x)(0k

′
x |eiq ′

yy |0kx) (5)

where V s(qx, qy, q
′
y) is the Fourier transform of the screened Coulomb interaction. As is usual

in the SHFA [9], we treat the screened potential φ in the static limit. Then V s in equation (5)
obeys the integral equation [6]

V s(qx, qy, q
′
y) = v0δ(qy + q ′

y)

q
+

v0

8π3q

∫ ∞

−∞
dqy1 V

s(qx, qy1, q
′
y)

×
∑
nα,nβ

∫ ∞

−∞
dkxα Fα,β(nα, kxα|eiqy1y |nβ, kxα − qx)

× (nβ, kxα − qx |e−iqyy |nα, kxα). (6)

Here v0 = 4π2e2/ε and kF = (ω̃/h̄�)[2m∗ /EF↑]1/2 is the characteristic wave vector such
that this level is filled only for |kx | � kF (/EF↑ = EF − h̄ω̃/2 − g0µBB/2). Within the
random-phase approximation (RPA), the tensor Fα,β connects the screened field V s with the
induced charge density, or the ‘induced’ density matrix ρs = ρ−ρ0, in the following manner:

〈nβ, kxβ |ρs |nα, kxα 〉 =
fnβ,kxβ − fnα,kxα

εnβ ,kxβ ,1 − εnα,kxα ,1 + ih̄/τ
〈nβ, kxβ |V s |nα, kxα 〉

≡ Fα,β〈nβ, kxβ |V s |nα, kxα 〉. (7)

Here τ → ∞ is the adiabaticity parameter and ρ0 satisfies

ρ0|α〉 = fα|α〉
where

fα = 1/[1 + exp((εα − EF )/kBT )]

is the Fermi–Dirac function. For a system having spatial homogeneity in the x–y plane, the
left-hand side of equation (7) is determined only by the difference between the wave vectors
of the two states, and equation (6) can be reduced to the standard Lindhard equation [8].

3. Integral equation

3.1. Approximate analytical solution

The first term on the right-hand side of equation (6) is the bare Coulomb potential; the other
terms are caused by screening in the QW. The F0,0-term involves transitions and screening
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within the lowest occupied LL, whereas the terms F0,n and Fn,0 (n = 1, 2, 3, . . .) involve
interlevel transitions and screening. In strong magnetic fields the total screening contribution
is determined mainly by the F0,0-term and it is sufficient to replace the sum

∑∞
nα,nβ

in equation
(6) by just three terms [6, 9]: F0,0, F0,1, and F1,0. This means that we take into account only
the intralevel and adjacent-level screening. Further, we split V s as

V s(qx, qy, q
′
y) = v0δ(qy + q ′

y)/q + V s
c (qx, qy, q

′
y) (q2 = q2

x + q2
y )

and use equation (4) and

εnα − εnβ |nα �=nβ ≈ (nα − nβ)h̄ω̃. (8)

Denoting by sinc(x) the function

sinc(x) = sin(k̃F x)/x

we can approximate equation (6), for T → 0 K, by

V s
c (qx, qy, q

′
y) = 2v2

0v1l
2

8π3

1

q̃q̃ ′ e
−(2a2q̃2

x+q̃2
y+q̃ ′2

y )/4

×
[

cos k̃F a(q̃y + q̃ ′
y)− 1

ω̃h̄lav1
(a2q̃2

x − q̃y q̃
′
y) sinc(q̃y + q̃ ′

y)

]

+
2v0v1

8π3

1

q̃

∫
dq̃y1 V

s
c (qx, qy1, q

′
y)e

−(a2q̃2
x+q̃2

y+a2q̃2
1 )/4

×
[

cos k̃F a(q̃y − q̃y1)− 1

ω̃h̄lav1
(a2q̃2

x + q̃y q̃y1) sinc(q̃y − q̃y1)

]
. (9)

Here,

q̃i = qil i: x, y, . . .

q ′ = (q2
x + q ′2

y )
1/2

q1 = (q2
x + q ′2

y1)
1/2.

The solution of equation (9) for the screened potential V s(qx, qy, q
′
y) can be sought in the

form

V s
c (qx, qy, q

′
y) = v0$(q̃x, q̃y)$(q̃x, q̃

′
y)

[
k̃1 cos k̃F q̃y cos k̃F q̃

′
y

+ k̃2 sin k̃F q̃y sin k̃F q̃
′
y + k̃3(q̃

2
x − q̃y q̃

′
y) sinc(q̃y + q̃ ′

y)
]

(10)

where

$(q̃x, q̃y) = (l/q̃)e−q̃2/4. (11)

The coefficients k̃i (q̃x, q̃y, q̃ ′
y) (i = 1, 2, 3) can be determined by substituting the trial solution

(10) into equation (9). The results, detailed in the appendix, are

k̃3(q̃x, q̃y, q̃
′
y) ≡ −Xr0/[π(1 + r0q̃

′e−q̃ ′2/2)] (12)

k̃i (q̃x, q̃y, q̃
′
y) = (−1)i+1 −α0(1+α0K̃i)

−1C1(q̃x, q̃y)C2(q̃x, q̃
′
y) (+: i = 1; −: i = 2)(13)

where

K̃±(q̃x) ≈ K±(q̃x)− r0

2

∫ ∞

−∞
dq̃y e−q̃2 1 ± cos 2k̃F q̃y

2 + r0q̃e−q̃2/2
. (14)

X is a fitting factor and the functions C1 and C2 are defined in the appendix; cf. equation
(A.10).
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Agreement with the numerical solution of equation (9) is obtained if we take

X = (2/π) arctan[q̃4
x exp(5q̃x + 4.5)].

Another expression that gives a very good agreement is

X = 1 − exp(−200q̃4
x ).

This means that for �q = 0 the interlevel contribution to the screened field is zero, while the
intralevel one tends to infinity. Further, C1 and C2 have different forms because the screening
in the QW is inhomogeneous along the y-direction. Equation (14) will be used in the next
section.

3.2. Numerical solution and results

In principle, equation (9) can be solved by iteration. However, as the integral kernel on the
right-hand side (RHS) of equation (9) becomes very large when qx is very small, any small
deviation in the trial values would cause a very large deviation on the RHS and lead to either
divergent results or an extremely long procedure. We avoided these problems by taking the
approximate analytical solution, equation (10), as the initial value and applying a ‘weighted’
iterative method. The details are as follows.

Suppose V i
l is the LHS value obtained by substituting the trial value of the ith iteration

V i into the RHS of equation (9). Then the trial value of the (i + 1)th iteration is taken as

V i+1 = V i + x(V i
l − V i)

where 0 � x � 1 is the ‘weight’ factor. If we take x = 0 we haveV i+1 = V i , which means that
there is no change between successive iterations. On the other hand, if we take x = 1 we have
V i+1 = V i

l as in the traditional iterative method. For equation (9) we take x small, say 0.5%
for qx = 1/150, to avoid divergence of results between iterations. In this way one can obtain
the numerical solution with any accuracy, provided that the iteration times are large enough.

The results of the numerical solution of equation (9) are plotted in figures 1 and 2 for
some special values of qx and ωc/�. For comparison the results of the approximate analytical
solution, expressed by equations (10), (12), and (13), are shown by the dotted curves. As can
be seen, the two results agree very well and this holds for large ranges of the parameters. For
example, the value of ωc/� can be changed, at least from 25 to 45, and that of q̃x from the
very small value 0.1/k̃F to the very large one k̃F . Figures 1(a) and 2(a) show the worst case:
q̃x = 1/k̃F .

4. Exchange and correlation energies, group velocities

With the help of equations (5), (10), and (13), the correlation and exchange energies
(q2

− = k̃2
− + q̃2

y , q ′2
− = k̃2

− + q̃ ′2
y , Q± = k̃x − k̃−/2 ± k̃F ) can be written as

εco0,kx ,1 ≈ r0h̄ω̃

2π

∫ k̃x+k̃F

k̃x−k̃F
dk̃−

[∑
+,−

α0

1 + α0K̃±(k̃−)
F±,1F±,2 + G

]
(15)

where

F±,i =
∫ ∞

−∞

dq̃y e−q2
−/2

2q−
Ci

[
cos(Q−q̃y)± cos(Q+q̃y)

]
i = 1, 2 (16)

G =
∫ ∞

−∞

∫ ∞

−∞
dq̃y dq̃ ′

y

e−(q2
−+q ′2

− )/2

q−q ′−
k̃3 cos[(q̃y + q̃ ′

y)(k̃x − k̃−/2)] sinc(q̃y + q̃ ′
y) (17)
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Figure 1. The numerical solutions (solid lines) and the approximate solutions (dotted lines) of
equation (9) for qx l = 1/k̃F = 1/15 (a) and qx l = 2.0 (b) for r0 = 0.85, R1 = ωc/� = 25.

and

εex0,kx ,1 = − r0h̄ω̃

2π

(∫ k̃F +k̃x

0
dk̃− +

∫ k̃F−k̃x

0
dk̃−

) ∫
dq̃y

e−q2
−/2

q−
. (18)
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Figure 2. As figure 1, but for qx l = 1/k̃F (a) and qx l = 2.0 (b) with r0 = 1.0, R1 = ωc/� = 45.

In equation (15) the last term is the correlation contribution from the neighbouring level.
The total correction to the free-particle energy due to exchange and correlations, εec0,kx ,1

, is
given by the sum of the contributions from equations (15) and (18).

To study the behaviour of the exchange and correlations near the Fermi edge we consider
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the derivative

vecg (kF ) = l

h̄

∂

∂k̃x
εec0,kx ,1

∣∣∣∣
kx→kF

= lω̃r0

2π

[
K0

(
k̃2

0

4

)
− α0K+(k̃0)K̃+(k̃0)

1 + α0K̃+(k̃0)
− α0K−(k̃0)K̃−(k̃0)

1 + α0K̃−(k̃0)

] ∣∣∣∣
k̃0→0

(19)

where k̃0 = k̃F − k̃x . Making the approximations, for α0K̃± > 1, K0(x)|x→0 ≈ ln(2/x) and
α0K̃±/(1 + α0K̃±) ≈ 1 − 1/α0K̃±(k̃0), and using equation (14), we can simplify equation
(19) further and obtain

vecg |k̃0→0 = lω̃r0

2π

[
K0

(
k̃2

0

4

)
−

(
1 − 1

α0K̃+

)
K+ −

(
1 − 1

α0K̃−
+

(
1

α0K̃−

)2)
K−

]

= l�̃

2

(
�

ω̃
k̃F

) [
K+

K̃+

+
K−
K̃−

− K−
α0K̃

2−

]
. (20)

The first term on the first line of equation (20) comes from the exchange; it is positive and
logarithmically divergent for k̃0 → 0. However, its singularity is cancelled exactly by that of
the correlations. This conclusion can be proved to be true even when the condition α0K̃± > 1
is not satisfied. Also, one can see from equations (17) and (19) that near the Fermi edge the
adjacent-level contribution to the derivative ∂εec0,kx ,1

/∂k̃x tends to zero very quickly. In this
case the nonsingular part of the total derivative comes from intralevel screening. For strong
magnetic fields, vecg (kF ) given by equation (20) tends to be a constant:

vecg (kF ) = vHg


1 +

1

K̃−

r0

4

∫ ∞

−∞

dq̃y e−q̃2
y (1 − cos 2k̃F q̃y)

2 + r0

√
k̃2

0 + q̃2
y e−(k̃2

0 +q̃2
y )/2


 ≈ vHg (kF ) (21)

where vHg (kF ) = l�̃(�k̃F /ω̃). This conclusion is reached because the second term in the
square brackets is less than 4% of the first term, e.g., for r0 = 1, and is consistent with the
approximate result of reference [6].

5. Concluding remarks

In section 4 we obtained, within the SHFA, the exchange–correlation energy εec0,kx ,1
and its

contribution to the Fermi-edge group velocity. Our derivation is based on the approximate
solution of the integral equation for the screened potential. As shown in section 3, this
approximate solution, which served as a very good first step for the iteration procedure, agrees
very well with the numerical one. Another important point is that, in contrast with standard
perturbative calculations or those of reference [6], in our approach making the assumption
r0 � 1 is not necessary.

We further notice that, as in reference [6], for the single-particle energy En,kx,σ the results
can be described in the framework of the local-density approximation (LDA) [12]. The latter
can be calculated at T = 0 by solving the single-particle Schrödinger equation

[h0 + Vxc(y)]|ϕ〉 = En,kx,σ |ϕ〉 (22)

where VXC(y) is the effective potential. The corresponding eigenvalue can be obtained from
E0,kx ,1 = ε0,kx ,1 + 〈|VXC(y)|〉, since VXC(y) is small compared to h̄0. Now as in reference [6]
we take

VXC(y) ≈ εec0,y/ l2,1 = εec0,kx ,1 |y| � y0(kF ). (23)
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As for the region |y| > y0(kF ), we take VXC(y) = 0. Then upon evaluation of 〈|VXC(y)|〉 we
find a very good agreement with the results of section 3 for the energies.

We now apply our theory to the experimental situation of reference [5] in GaAlAs/GaAs
QWs. The parameters for sample 1 are h̄� ≈ 0.65 meV, B ≈ 10 T, W ≈ 0.30 µm; this gives
k̃F ≈ 15, ωc/� ≈ 25. For sample 2, the estimated parameters are h̄� = 0.46 ± 0.2 meV,
B ≈ 7.3 T, W ≈ 0.33 µm, and they lead to k̃F ≈ 15 and ωc/� ≈ 32. We plot our
results for sample 1 and sample 2 in figures 3 and 4, respectively. Figure 3 shows that
electronic correlations suppress the spin splitting and therefore there is no ν = 1 quantum
Hall-effect (QHE) state in sample 1. In figure 4, at the Fermi edge, there is an activation gap
/E↓F ≈ 0.013h̄ωc ≈ 1.5 K. This is very close to the experimental result [5] /E↓F ≈ 1 K.
The single-particle group velocity at the Fermi level vg(kx) = (1/h̄)(∂/∂k̃x)E0,kx ,1 can be
calculated as

vg(kF ) = vHg (kF ) +
l

h̄

∂

∂k̃x
〈|εec0,kx ,1|〉|k̃x→k̃F

. (24)

A numerical calculation gives vg(kF ) = 6.9vHg and vg(kF ) ≈ 11vHg for samples 1 and 2,
respectively. The corresponding values of reference [6] are, respectively, vg(kF ) = 10vHg and
vg(kF ) = 5vHg .

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

k
x
l

1

2

∼E/ hω

Figure 3. Energies as a function of k̃x for sample 1 of reference [5]. The parameters are
h̄� ≈ 0.65 meV, B ≈ 10 T, W ≈ 0.30 µm, k̃F ≈ 15, and R1 = ωc/� ≈ 25. Curve 1
shows E = ε0,kx ,−1 for the upper spin-split LL. Curve 2 shows E = ε0,kx ,1 + εec0,kx ,1

obtained from
equations (2), (15), and (18). Notice that there is no finite gap that would lead to the ν = 1 QHE.

In summary, we have assessed the effects of Coulomb interaction and correlations in
quantum wires at strong magnetic fields for ν = 1. We have obtained an overall agreement
between the analytical and numerical results as well as between the theoretical and the
experimental results. Actually, the approach we that we discussed in section 3, involving
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Figure 4. As figure 3, but with the parameters of sample 2 of reference [5], i.e. h̄� =
0.46 ± 0.2 meV, B ≈ 7.3 T, W ≈ 0.33 µm, k̃F ≈ 15, and R1 = ωc/� ≈ 32. In contrast
with figure 3, when the exchange and correlations are taken into account, a gap appears between
the curves for the σ = −1 and σ = 1 LLs and leads to the ν = 1 QHE state.

only interlevel and adjacent-level screening, can also be applied to the cases of ν = 2, 3,
provided that k̃νF is large enough. This will be the subject of a separate investigation.
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Appendix A. Solution of the integral equation

To solve equation (9) we make the approximation

(2m̃/h̄2)

∫ −kF +qx

−kF
dkxα

e−ia(q̃y+q̃ ′
y )k̃xα

(kxα − qx)2 − k2
xα

= (v1k̃F /q̃x)e
−ia(q̃y+q̃ ′

y )q̃x/2
[
Ei(A−)− Ei(A+)

]
(A.1)

≈ v1eia(q̃y+q̃ ′
y )(k̃F−q̃x/2) (A.2)

where A± = i(q̃y + q̃ ′
y)(k̃F ± q̃x/2), v1 = −m̃/h̄2kF = −(ω̃/�)2(1/k̃F lh̄ω̃) and Ei is the

exponential integral [10]. In equation (A.1) we can neglect the change in amplitude because it
has a very small effect on the screened field described by equation (6) and on the exchange and
correlation energy given by equation (5). However, the variation in phase caused by different
q̃x plays a much more important role in equation (5). To simplify the results, we make the
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approximation (A.2). Also, in agreement with experiments [5], we take k̃F = 15. This is
sufficiently large to allow the use of the simplified equation (9) for studying the exchange and
correlation in our problem. For simplicity we use a ≈ 1.

We now substitute the trial solution (10) in equation (9). With the help of sinc(x) ∼ δ(x)

and the neglect of small oscillatory terms, we can make the following approximations:∫
dq̃y1

e−q̃2
1 /2

q̃1
k̃3(q̃x, q̃y1, q̃

′
y)(q̃

2
x − q̃ ′

y q̃y1) sinc(q̃ ′
y + q̃y1) cos k̃F q̃y1

≈ π

2
k̃3(q̃x,−q̃ ′

y, q̃
′
y)q̃

′e−q̃ ′2/2 cos k̃F q̃
′
y (A.3)

∫
dq̃y1

e−q̃2
1 /2

q̃1
k̃3(q̃x, q̃y1, q̃

′
y)(q̃

2
x − q̃ ′

y q̃y1) sinc(q̃ ′
y + q̃y1) sin k̃F q̃y1

≈ π

2
k̃3(q̃x,−q̃ ′

y, q̃
′
y)q̃

′e−q̃ ′2/2 sin k̃F q̃
′
y (A.4)

∫
dq̃y1

e−q̃2
1 /2

q̃1
k̃3(q̃x, q̃y1, q̃

′
y)(q̃

2
x − q̃ ′

y q̃y1)(q̃
2
x + q̃y q̃y1) sinc(q̃y − q̃y1) sinc(q̃ ′

y + q̃y1)

≈ πk̃3(q̃x, q̃y, q̃
′
y)(q̃

2
x − q̃ ′

y q̃y)q̃e−q̃2/2 sinc(q̃ ′
y + q̃y). (A.5)

If we now equate the coefficients of the cos k̃F q̃y cos k̃F q̃ ′
y , sin k̃F q̃y sin k̃F q̃ ′

y , and sinc(q̃y + q̃ ′
y)

terms on both sides of equation (9) we obtain

k̃3(q̃x, q̃y, q̃
′
y) = − r0

π

[
1 + πq̃ ′e−q̃ ′2/2k̃3(q̃x, q̃y, q̃

′
y)

]
(A.6)

k̃i (q̃x, q̃y, q̃
′
y) = ∓α0

[
1 ±

∫ ∞

−∞
dq̃y1

e−q̃2
1 /2

q̃1

1 ± cos(2k̃F q̃y1)

2
k̃i (q̃x, q̃

′
y, q̃

′
y)

]

∓ r0
α

2
q̃ ′e−q̃ ′2/2k̃3(q̃x,−q̃ ′

y, q̃
′
y)− r0

2
q̃e−q̃2/2k̃i (q̃x, q̃y, q̃

′
y) i = 1, 2

(A.7)

where α = (ω̃/�)2(1/k̃F ) and α0 = r0α/π . The solution to equation (17) is

k̃3(q̃x, q̃y, q̃
′
y) = −r0/[π(1 + r0q̃

′e−q̃ ′2/2)]. (A.8)

This value of k̃3 and those of k̃i (i = 1, 2) given below with X = 1 lead to an expression for
the potential that agrees with the numerical solution of equation (9), depending on the value of
qx , to within 80%–99%. A much better agreement is obtained if we change k̃3 to Xk̃3 where
X is a function of qx ; see below. As for k̃i (i = 1, 2), we assume that it can be factorized as
k̃i = k̃ix(q̃x)k̃iy(q̃x, q̃y)k̃

′
iy(q̃x, q̃

′
y). With

k̃3(q̃x, q̃y, q̃
′
y) ≡ −Xr0/[π(1 + r0q̃

′e−q̃ ′2/2)] (A.9)

we obtain

k̃i (q̃x, q̃y, q̃
′
y) = (−1)i+1 − α0

1 + α0K̃i

2

2 + r0q̃e−q̃2/2

[
1 − Xr0q̃

′e−q̃ ′2/2

2(1 + r0q̃ ′e−q̃ ′2/2)

]

= (−1)i+1 − α0

1 + α0K̃i

C1(q̃x, q̃y)C2(q̃x, q̃
′
y) (+: i = 1; −: i = 2) (A.10)

where

K̃±(q̃x) =
∫ ∞

−∞

dq̃y e−q̃2/2

q̃(2 + r0q̃e−q̃2/2)
(1 ± cos 2k̃F q̃y). (A.11)
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With K± = K̃±|r0=0 we have

K±(q̃x) ≈
[
eq̃

2
x /4K0(q̃

2
x /4)/2 ±K0(2k̃F q̃x)

]
e−q̃2

x /2 (A.12)

where K0(x) is the modified Bessel function [10] and

K̃±(q̃x) =
∫ ∞

−∞
dq̃y

e−q̃2
y /2

q̃

1 ± cos 2k̃F q̃y
2

∑
n=0

(
− r0

2
q̃e−q̃2/2

)n

= K±(q̃x)− r0

2

∫ ∞

−∞
dq̃y e−q̃2 1 ± cos 2k̃F q̃y

2 + r0q̃e−q̃2/2
. (A.13)

Substituting equations (A.9) and (A.10) back into equations (A.3)–(A.5) confirms the validity
of these approximations.
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